Online calculator
Conductor-backed Coplanar Waveguide Analysis



Takayuki HOSODA
Dec. 26, 2022

Conductor-backed Coplanar Waveguide Analysis

Frequency    MHz
Electrical length    deg
Dielectric relative permittivity (εr  
Dielectric thickness (h  μm
Conductor width (w)     μm
Conductor gap (g)     μm
Conductor thickness (t)    μm
Impedance (Z0) ≈    Ω
Effective permittivity (Εeff) ≈    
Capacitance ≈     pF/m
Inductance ≈     nH/m
Velocity of propagation ≈     
Phisical length ≈     mm
zcbcpw - Analyze Conductor-backed Coplanar Waveguide. Rev.0.82 (Feb. 15, 2023) (c) 2022 Takayuki HOSODA

Formulas used [2], [3]


Z_0 &=& \frac{\eta_0}{2 \sqrt{\varepsilon_\mathrm{eff}}}
\frac{1}{\displaystyle \frac{K(k)}{K(k')} + \frac{K(k_3)}{K(k'_3)}}\\
\varepsilon_\mathrm{eff} &=& \frac{1 +  \varepsilon_{r} \displaystyle\frac{K(k')}{K(k)}\frac{K(k_3)}{K(k'_3)}}
{1 + \displaystyle\frac{K(k')}{K(k)}\frac{K(k_3)}{K(k'_3)}}
where

k &=& \frac{w}{w + 2g}\\
k_3 &=& \frac{\tanh\left(\displaystyle\frac{ \pi w}{4 h}\right)}{\tanh\left(\displaystyle\frac{\pi (w + 2g)}{4 h}\right)}\\
k' &=&  \sqrt{1 - k^2} \\
k'_3 &=&  \sqrt{1 - k_3^2}
η0  :  Impedance of free space   376.730313668(57)   Ω
and   K(k)   is the complete elliptic integral of the first kind.

The above analytical solution is for a negligibly thin conductor thickness, but the conductor thickness used in an actual circuit board has a non-negligible effect. The following formulas are used to compensate the effect of conductor thickness to center strip width w and slot widths g.


\delta &=& t\\
w & \leftarrow & w + \delta \\
s & \leftarrow & s - \delta \\ 
d & \leftarrow & d - \delta

APPENDIX 1

Examples of electromagnetic field simulations results (ground plane width W = 12h + 2g + w, upper conductor height H = 8(h + t) Length unit in [ μm ].

w=220, g=100, h=200, t=18, ϵr=4.6 : Z0=53.792 Ω
w=300, g=200, h=200, t=18, ϵr=4.6 : Z0=51.438 Ω
Pseudo color visualization of absolute value of the electric field of a cbcpw
Pseudo color visualization of absolute value of the electric field of a cbcpw.

APPENDIX 2

The ratio of the complete elliptic integrals of the first kind K(k) and K(k') can be calculated by the following relation with the ratio of arithmetic-geometric means. The argument k is the elliptic modulus.

\frac{K(k)}{K(k')}  & = & \displaystyle\frac{\mathrm{agm}(1, k)}{\mathrm{agm}(1, k')}\\
\\
k' &=& \sqrt{1 - k^2}
where agm(1, k) is the arithmetic-geometric mean of 1 and k.

REFERENCE

  1. Victor Fouad Hanna, "Parameters of Couplanar Directional Couplers with Lower Ground Plane", 15h European Microwave Conference, 1985
  2. Rainee N. Simons, "Coplanar Waveguide Circuits, Components, and Systems", A JOHN WILEY & SONS, INC., PUBLICATION, 2001
  3. Brian C. Wadell, "Transmission Line Design Handbook", Artech House, Inc., 1991, ISBN 0-89006-436-9
  4. Complete Elliptic Integral of the First Kind — Wolfram MathWorld
  5. W. Hilberg, "From Approximations to Exact Relations for Characteristic Impedances", IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-17, No. 5 pp. 259-265. May 1969.

SEE ALSO


www.finetune.co.jp [Mail] © 2000 Takayuki HOSODA.